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Abstract-This study presents an analytical solution to the problem of delamination growth and
buckling in an orthotropic strip. Growth of an initially imperfect delamination located in the mid­
plane of the strip is addressed when the applied stress is below the bifurcation point. The results for
the buckling stress are also provided in the case of perfect delamination surfaces. Delamination
growth and buckling is a commonly observed failure mode in laminated structures; this type of
failure mode may cause structural degradation or stiffness reduction and leads ultimately to prema­
ture failure at stresses well below the design levels for an undamaged laminate. Under compression
loading. the nature of the delamination response. which involves the interaction of delamination
growth and buckling. is addressed by employing the governing equations of clastic stability under
plane strain assumptions. Solutions to the problem of an orthotropic strip with a through-width
delamination subjected to uniaxial compression are obtained by using mathematical techniques
appropriate for mixed boundary value problems.

I. INTRODUCTION

Fiber-reinforced composite laminates are widely used in aircraft and space structures bt.'Cause
of their high strength-to-weight ratio. In order to design laminated composite structures
according to damage tolerance requirements. it is important to predict and understand their
behavior under various load conditions. It is well known that laminated structures are prone
to defects such as broken fibers. cracks in the matrix material, and interface delaminations.
Premature failure due to the existence of delaminations is one of the most common failure
modes in composite materials and bonded joints. Dclaminations may arise as a result of
imperfections during the manufacturing process (inclusions. wrinkles. or gas bubbles) or
because of the effect of certain factors during the operational life of the laminate. such as
low-velocity impact by foreign objects.

The presence of delaminations may cause structural degradation or stiffness reduction
and leads ultimately to premature failure at stresses well below the design levels for an
undamaged laminate. The response of delaminations in composites under shear loading has
been addressed to a considerable extent within the realm ofcontinuum mechanics. However.
under compression loading the nature of the delamination response involves the interaction
of delamination growth and buckling. Therefore. understanding the basic mechanics of the
delamination response under a compressive load becomes essential in assessing the struc­
tural integrity of composite materials.

In recent years. delamination buckling and growth has been studied by many
researchers in the field (Kachanov. 1976; Chai el 01.• 1981; Bottega and Maewal. 1983;
Polilov and Rabotnov. 1983; Yin and Wang. 1984; Yin el 01.• 1984; Simitses ef al.• 1984;
Wang ef al.. 1985a.b; Sallam and Simitses. 1985; Chai and Babcock. 1985; Ilic and
Williams. 1986; Vizzini and Lagace. 1987; Storakess and Andersson. 1988; Bruno. 1988;
Partridge ef al.• 1989; Kachanov. 1988). However. these investigations employ structural
mechanics theories such as those for beams and plates. and therefore entail approximations.
First. in order to model the delaminated layer as a beam or as a plate. the ratio of
delamination length to its thickness must be large. Second. the edges of the delamination
are assumed to be either clamped or simply supported. and the delamination cannot grow
unless the delaminated layer buckles. While suitable for initial strength evaluation of the
delaminated composites. such approximations do not permit a detailed fracture mechanics
examination. As a result. delamination growth in these studies is determined either by
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Fig. I. Orthotropic strip with delamination under compression.

enforcing a global energy balance of the system or by incorporating the concept of energy
release rate after the buckling point is reached.

Madenci (1987) and Madenci and Westmann (1989) studied the problem of delami­
nation buckling and growth in a layered isotropic structure by employing the stability
equations of elasticity theory which overcome these limitations. Based on the formulation
presented by Madenci (1987). this study addresses the buckling and growth of an initially
imperfect through-width delamination in an orthotropic strip subjected to a compressive
load (up to the buckling point). The detailed fracture mechanics examination is achieved
by allowing the delaminated region to be slightly open. This approach permits the study of
the growth process which might eventually lead to buckling.

Section 2 presents the mathematical model for uniaxial in-plane loading when the
delamination and bounding surfaces are slightly perturbed from the perfect configuration.
In Section 3. the solution is obtained by first reducing the problem to a pair of dual intcgral
equations and then to thc solution ofa single nonhomogeneous Fredholm integral equation
of the second kind. The solution to this equation provides the stress intensity factor for
applied compressive stress under a specified delamination thickness. The stress intensity
factor is determined to be a complex function of the applied stress. unlike those usually
enwuntered in linear elastic fracture mechanics. Allowing the slight perturbation of the
surfaces to disappear results in a homogeneous Fredholm integral equation of the second
kind. The solution to this cquation provides the buckling stress and the mode shape for a
specified delamination thickness.

Section 4 outlines the numerical method used to solve these equations. Numerical
results are presented to show how the buckling stress and the stress intensity factor depend
on the applicable parameters.

:!. PROBLEM STATEMENT

This study is concerned with the growth and buckling of a delamination embedded in
a flat orthotropic strip subjected to in-plane compressive loads. The principal axes of the
material symmetry arc taken to be the same as the reference coordinate system (x.Y. =) in
which the symmetry plane y = 0 coincides with the mid-surface of the layer (Fig. I). This
strip. infinite in length. has unit width and thickness 21z. A through-width delamination of
length 2(1 «(I = I) is located in the mid-plane of the strip. t The bounding and delamination
surfaces Sand S. respectively. can be expressed as

S= {x.y+.1(X).=:XE[O,OO),y= ±h,=E[O.IJ}

S= {x,y+.1(X).=:XE[O,OO),y= ±O,=E[O.I]}.

The initially imperfect bounding and delamination surfaces. which deviate only slightly

t The half delamination length a is taken to be unity in order to achieve a dImensionless statement of the
prohlem.
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from the perfect configuration (y = ±h. y = 0). can be described by the functions A(x)
and ~(x), respectively:t

T 5( 1tx)o(x) =:2 I +cos -;;- H(ii-x)

b ( 1tx)~(x) =:2 I +cos -;;- H(a-x). (1)

The relationship between the primary parameters J and O. the amplitudes of the imper­
fections, can be established from the constant volume requirement of the material and from
the assumption that ii = a+h. This results in the relationship

.. ()
0=­

a+h
(2)

for the functions given in (I).
The strip is subjected to an in-plane compressive loading 0'1) resulting from the initial

equilibrium state. In terms of the rectangular Cartesian components of the stress (11,~). this
may he staled by

11:; = 0 otherwise.
i•.i = x.y.:

(3)

Surl~tces Sand S remain Iral.:lion free.
If the rectangular Cartesian components of the displacement vector of the buckled

state arc denoled by II,. the equilibrium equations derived by Bolotin (1963). Fltlgge (1972)
and Washizu (1975) for the adjal.:ent equilibrium positions may be staled ast

[11,,+O';~III.d.J = 0 i•.i,k = x.y.:. (4)

In eqn (4), 11;; is the spatially constant initial equilibrium stress described by eqn (3). In the
derivation of equations of clastic stability concerning bifurcation. it is assumed that the
unit normal to the bounding surfaces is perpendicular to the direction of the ~Ipplied load
and/or that uniform louding is achieved at every cross-section. If this assumption docs not
hold. the nature of the stability problem is altered.

When the unit normal, with components"" to the bounding surface is slightly disturbed
from the perpendicular position to the direction of the applied load, then the components
of the stress vector, T,. acting on that surface are given by

(5)

where ,,;1 denotes the components of the unit normal to the plune along which the applied
load acts.

In eqn (5), the term (n,-"?) is related to the function Mx,), which describes the slightly
imperfect surface as§

t Here and in the following. lI(x) denotes the Heavisidc step funclion.
t In the derivation ofeqn (4). it is assumed that Ihe displacement gradients arc small. Iii.,,! « 1. and standard

lensor notation for summation and derivatives is employed.
§ Due 10 slighl deviation from Ihe perfect configuration. it is assumed that the gradient 6(x.) is small,

16.1 « I.



E. MADESC1

(6)

The strip is composed of a homogeneous, elastic and orthotropic material with elastic
coefficients

(7)

in which

The constants £, and G,; stand for the moduli of elasticity, and v" are the Poisson's ratios.
Under plane strain assumptions.t the constitutive relations become

(1 .. = C 11 U,..,+CI2 U......

(1•.•. = C 21 U,..,+Cn u•.,Y

(1", = C66 (U'.... +u,...,)

(1.,: = (1.: = O. (8)

Substitution from eqn (I) into eqns (4) and (5) results in the governing differential equations
for an orthotropic material under plane strain assumptions as

(Cll-(10)U'..U+Cb6U'....y+(CI2+Coo)Uy..TY = 0

(C61>-(10)U•.xx+CnUy.•.•. +(CI2+CI>6)U'.xy = O.

The boundary conditions associated with the traction-free surface S then become

(9)

(lOa)

( lOb)

The presence of symmetry with respect to the mid-plane (y := 0) and the requirement that
the surface S (delamination) be traction free result in the following boundary conditions:

C66 (U,.• +Uy..,) +(10.1", = 01
C 12u, ..,+Cn uv.v = 0 y:= 0+

u•. =0

Further. the far field regularity conditions require that

XE (0, 00)

XE [0, I)

xE(I,co).

( Ila)

(lIb)

( lIe)

t The displacement component u, and derivatives with respect to =vanish due to plane strain assumptions.
Thus. u, and u, arc only functions of x and y.
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U,.U,.-O for ye[O.h]. x-::c.
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When the term (n,-n,o) in eqn (5) disappears (i.e. the boundaries are perfect. c5 = 0), then
the nature of the boundary value problem changes; it becomes an instability problem. Its
solution involves the search for 0'0 so that nontrivial solutions of eqn (2) exist subject to
the boundary conditions that T, [eqn (5)] vanish on Sand S. It is worthwhile mentioning
here that the effect of nonlinearities which may affect the growth of delamination near the
bifurcation point is not reflected in the present analysis because of the assumptions
involved in the derivation ofeqns (4) and (5).

3. MATHEMATICAL FORMULATION AND SOLUTION

The solution procedure begins by applying the pair of Fourier sine and cosine trans­
forms to the displacement components. These transformations are defined as

with the inversion

ii,(~.y) = I" u,(x,y) sin (~x) dx

li,(~.y) = I" u,(x.y)cos(~x)dx
o

,i('1I,(X,y) = -. u,(~.y) sin (ex) de
1t 0

"I"1I,(X.y) = - liy(e.y) cos (ex) de.
1t 0 .

(12)

(13)

The displacement equilibrium cqns (9). when transformed according to cqn (13). reduce to
a pair of ordinary dillcrential equations for u.(~,y) and uy(e.y),t

Cbb,i';(e,y) - (C II -O'o)~2,i,(e.y)- (C 12 +Cbb)eU~(e.y) == 0

C22li~(e. y) - (Cbb - 0'0)~2u,(e.y) +(C 12 +Cbb)eU~(e, y) == O.

Nontrivial solutions to eqns (14) are determim:d to be

(14)

~

u,(~.y) = L A,(~)er,~y and
,-I

in which A,(e) and B,(~) are related by

4

uy(e.y) == L B,W er,~y
i-I

(15)

B,(e) == k(,,)A,(~)

where

The parameters " (i = 1..... 4) are the roots of the characteristic equation

t Prime denotes differentiation with respect to variable )'.

(16)



177~

where

and
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p = CZZ(C 11 -0'0) + C66 (C66 -0'0) -(CIZ +C66 )Z

2Cn C 66

Q = (C II -0'0)(C66 -0'0).

C ZZ C 66

(17)

The characteristic roots '; of eqn (17) may either be real or complex. depending on the
composite system. as mentioned by Elliott (1948) and Sih and Chen (1981). If p2 > Q and
provided that Q > O. then the roots are real:

'1 = cr. '2 = -7. 'J = If, and ,~ = -/1

where

For pZ < Q and provided that P > O. the roots become complex:

where

The general solutions for u«~,y) and u)'(~,y) in the case of real roots are

li,(~,y) = A I (~) eX~" + A z(~) c·~)' + A J(~) eP~)' + A~(e) e -(I~y

u,.(~.y) = k(a)[A,(~)eX~Y-Az(e)e X~YJ+k(ff)[AJ(e)e/l~"-A~(e)e-P~I'J (18)

and in the case of complex roots they become

u«~. y) = [A I(e) e;'~)' + A z(e) e -'~YJ cos ,ey+ [A J<e) e'~Y + A4(e) e -'("J sin (~y

u,.(~,y) = {m[A I (~) e'~Y - A zW e-'~Y]+n[A J(e) e;'~Y + A 4(e) e-;'~'Y]} cos ,eY

- {n[A I (e) e;'~" + A 2W e -'~Y]-m[A J(e) e;'~Y - A~(e) e -'~Y]} sin ((r (19)

where

m = Re[k(y+i()] and n = 1m [k(,'+i()].

The unknown coefficients A I. A z. A J and A ~ are to be determined from the boundary
conditions (10), (II). Enforcement of the traction-free condition (10) on the surface y = h
and the shear-free condition (II) in the mid-plane y = 0 permits the expressions for A I-A J
in terms of A 4' The remaining unknown A ~ is determined by imposing the mixed boundary
conditions (II b). (II c) in the plane of the delaminated region. Enforcing (II b). (lie) results
in the following pair of dual integral equations:
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f' C(~)~cos(~x)d~ = ix; C(~)~G(~)cos(~x)d~+f(x) xe[O.I) (20a)

ix;C(~)COS(~X)d~=9(X) xe(I.:N) (20b)

in which the unknown function C(~) involves the remaining unknown A 4 • The relationships
between C(~) and A4(~) and the known function G(~) are given in the Appendix. The
functions f(x) and g(x) which appear in the formulation as a result of the slight imper­
fections of the bounding surfaces are

f(x) = J1" [DI(~)SI(~)+D2(~)S2W]~ cos(~x)d~

g(x) = J IX; [Dj(~)S,(~)+D4(~)S2(~»)cos(~x)d~

(2Ia)

(21 b)

where the expressions for D 1-D4 • SI and S2 are also given in the Appendix.
The dual integral eqns (20) arc converted to a nonhomogeneous Fredholm integral

equation of the second kind. as suggested by Sneddon and Lowcngrub (1969). by means
of the following integral representation for C(~)t (Copson. 1961):

(22)

In this representation. (1)1(t) and <l>2(t) are assumed to be continuous over the interval [0. I)
and [1.00). respectively. and are required to satisfy the conditions

lim t l:2(!>I(t) = 0 and lim t I2 (1)2(t) = O.
f .. 0' ,-.. ,z)

Substituting (22) into (20b) and utilizing the Weber-Schaftheitlin integral given by Watson
(1944) leads to an Abel integral equation for (1)2(t)

.f" I" dto t "([>.(t) --= =g(x) xe (I, 00)., . Jt 2 -x2
(23)

Inverting eqn (23) by applying Abel's solution method presented by Whittaker and Watson
(1920) and then substituting (21 b) for g(x) gives the final expression for <l>2(t)

Integration of (20a) within the limits of 0 to x and substitution from (22) into the left-hand
side of the resulting equation with the use of the Weber-Schaftheitlin integral yields the
second Abel integral equation

f·r dt i" {iX; }a t l'2<1>I(t) ~:;= C(~)~G(~)cos(~t)d~+f(t) dt xe[O.I) (25)
o v' x· - rOO

Applying Abel's solution method to invert the left-hand side of eqn (25) and then sub­
stituting from (22) and (2Ia) results in the final governing integral equation for (1)1(t):

t In this paper. i,Cx) denotes the Bessel function of the first kind. with argument x and order v.
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where

and
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<Ill (C) = f"- K(t.r;CTo.h)<Il1(r)dr+L(t) tE[O.I)Jo (26)

For the present problem. the stress intensity factor K[ along the delamination edge is
obtained from the following expression:

CT•.•. (x. 0) = - ~ I{t" ~C(~) cos (~x) d~ -1" ~G(e)C(~) cos (~x)de - f(X)} XE (I. (0)

(27)

in which 1=l(Ct"Ct~.Cn.Ct>t>.CTo} and is given in the Appendix, Modifying (23) by
integration by parts and substituting the resulting form into eqn (27) by use of the Weber­
Schafheitlin integral yields the following:

CT,.,(X,O) =2IJ{[«(>I(I)-<ll2(1)J['''<-== -IJ
n JX--l

_f<.d.[t-1I2<llt(t>l[ x -1]dt+X- 1/2<ll2(X}Jo dt JX 2_t2

_ f'.~ [t .. 1i2(I>I(X)][J x , -I]dt+ fl t1t2<llt(t) f" eG(~)Jo(~t)cos(';x)d~dtJI ut x 2 _ r Jo Jo

+ f" t 1
/
2<ll2(t) fa" eG(e)Jo(et)cOS(eX)d';dt+f(X)} xe(l.oo). (28)

All of the terms in eqn (28) except the first are bounded as x approaches I,
Defining

p=x-l

and retaining the first term in (28) results in the ncar field solution for the normal stress:

as p -0", (29)

From the well-known asymptotic expression for the normal stress in the vicinity of the
dehtmination edge,
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(30)

where K, is the stress intensity factor and p is the distance away from the delamination
edge, the stress intensity factor for the present problem can be written as

(31 )

4. NUMERICAL RESULTS

For the problem under consideration, the general form of the integral equation is

<1>(x) = ;.1' K(x, y; C1 o,Iz)<1>(y) dy +F(x) ;. = 1. (32)

The complexity of the kernels in eqn (26) requires that the integral equation be solved
numerically. The procedure involves the reduction of the integral equation to a system of
algebraic equations using Bode's rule for numerical quadrature provided by Abramowitz
and Stegun (1972). As a result of this discretization, eqn (32) may be written as

in which

and

•• I

L 1'1",..1>. = F. m= 1,2, ... ,N+1
.-1

A",. = (5",. -1l'.K[(m - 1).1", (n - I )s]

<I>. = <I>[(n-I).I"]

f: = F[(n-I).I"].

(33)

The integer N (divisible by 4) is the number of equal intervals of length s and the weights
of Bode's rule denoted by 11"•• This discretization results in (N+ I) equations in the (N+ I)
unknowns <I>[(n - 1).1"]. t

In the case of perfect bounding and delamination surfaces, F(x) in (32) disappears,
resulting in a system of homogeneous algebraic equations. A nontrivial solution of the
integral equation is found by searching for those values of C10 which cause the determinant
of Am. to vanish. An increasing sequence of values of Go is selected and the determinant of
Am. evaluated. Once a change in sign of the determinant is observed, a first estimate of the
buckling stress is obtained by interpolation. This value is further refined by se(ecting values
of C1 0 closely surrounding the initial estimate. This scheme was used successfully by Stahl
and Keer (1972). The numerical evaluation of the infinite integrals in eqn (26) is carried
out by using Bode's quadrature rule and a sufficient number of intervals is used to ensure
the accuracy of results. Considerable care is taken in the evaluation of the infinite integrals
as the integration parameter approaches 0 and 00.

When the delamination edge is perpendicular to the fiber direction, the lamina prop­
erties for Modomor I1/LY558 (graphite-epoxy) at a fiber-volume ratio of 0.67 are taken
from Kriz and Stinchcomb (1979) as

t In the solution or eqn (26), the number or integration intervals is taken to be N = 40 as the result or a
convergence study.
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E 1 = 22.8 X IOb psi; G I2 = G IJ = 1.03 X 106 psi; VI2 = VIJ = 0.3

E 2 = E J = 1.57 X lOb psi; G2J = 0.527 X 106psi; V2J = 0.489,

resulting in real roots for the characteristic eqn (17). When the delamination edge is parallel
to the fiber direction, the roots to eqn (17) become complex.

In the case of a slightly open delamination, the normalized stress intensity factor,
Kl~/G 12b, is calculated for a range of normalized applied stress O'~ = 0'olG 12. The
results are depicted in Fig. 2 for a specified dimensionless thickness, h* = hla. In order to
identify the nature of the delamination growth process, the normalized stress intensity
factor. K.J/,IG I2 J, is calculated as a function of the dimensionless thickness, h*, for a
specified applied stress. This relationship is illustrated in Fig. 3 for a range of O'~ values.
Asymptotes in Figs 2-4 indicate the buckling stress for the case of perfect delamination
surfaces, i.e. J = O.

In the case ofa closed delamination, the solution procedure involves the search for 0'0

such that ). ::: I is an eigenvalue in eqn (26). The numerical treatment of the integral eqn
(26) by the method outlined provides the variation of the dimensionless buckling stress, O'~,

as a function of the dimensionless thickness, h* (Fig. 4). Once the buckling stress is
computed, the buckling shape is obtained from the following expression:
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(34)

The asymptotic form of eqn (33) is

A typical normalized buckling shape is presented in Fig. 5 for a dimensionless thickness
h· =0.1.

5. FINAL COMMENTS

The present analysis focuses on the assessment of the delamination growth parameter,
K., due to the slight opening of the delamination surfaces. Also, this is bounded by the
results from the simplified model of a clamped and a simply supported thin plate analysis
(Fig. 4). The results shown with dotted lines in Figs 4a-4b are approximated due to the
numerical convergence difficulties encountered in the solution of the integral eqn (26) for
h· < 0.05.
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The stress intensity factors are determined to be a complex function of the applied
stress. unlike those encountered in linear clastic fracture mechanics where the stress intensity
factor is proportional to the applied load. For a specified amplitude. (). of the initially
imperfect delamination. should the stress intensity factor be greater than or equal to the
interfacial fracture toughnesst of the laminate. the present analysis indicates unstable
delamination growth even before the buckling stress is reached. Recently. Pavier and

tIn lhe open literalure. a lypical fracture loughness value for an epo~y system varies in the range 650­
950 Ib in -Ill.
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Chester (1990) experimentally found that delaminations in carbon fiber-reinforced epoxy
tend to grow in size prior to failure due to buckling.

The study of delamination growth prior to buckling is made possible by determining
the stress intensity factor. Previous analysis by other authors could not account for delami­
nation growth before buckling. As shown in Fig. 3, the stress intensity factor increases for
fixed delamination thickness under increasing applied stress. Once the interfacial fracture
toughness is reached. then delamination growth occurs. As delamination grows. the stress
intensity factor increases. This relationship is depicted for certain values of (1* in Fig. 3.
Once the delamination growth begins. it accelerates and the ratio of delamination length
to thickness "* decreases to the point that buckling occurs under the specified applied stress.
As mentioned earlier. the problem of delamination response under compression involves
the interaction between delamination growth and buckling, and this study represents an
attempt toward a better understanding of this interaction.
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APPENDIX

H,'al roo1.l'
In clln (2(). the unknown function. C(~). is related to the unknown codllcienl. A •• as follows:

; k(:x)[N ..W - NHW! +k({Jl[N ..(~)-NWI
C(~) "" - ...... --, ••---•.•'-.----..•-.-..... ,A

N(~) •

where

N,,(~) == q(p_q)e·ll.. ~I~._2pl/e-'..PI~·+q(p+q)e-l.~.

Nl'(~) = q(p-q)-2pqc ""/fl~'+q(p+q)e lP~h

Nu(~) :: -(p-q)c 1(JUh;h_'1qt: fJf!n;1t+(p+q)c :!P;h

in which

s({J) (P)
P = - and q = t(~) .s(x) ~

The expressions for s(r) and I(r) arc defined as

s(r) == C11+C11rk(r) and t(r) == C••{r-k(r)j.

The known function. G(':). in the same equation is given as

GW == I+! s(:x)[N..(~)+Nl.WJ+s(J1)[NH(~)+N(~!J
I k(:x)[N ..«;)-NHW)+k(P)[NH«;)-N(.;»)

where

1 := s(p) -qs(:x) .
k(Pl-qk(:x)

The functions 0 1(':) to 0 .(~) which appear in eqn (21) are defined as follows:
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• s(x)N" (.;) +s(x).V,,(';) +s(P).V,,(';)
D,(~) = INI';)

• s(x)N,:(';) +s(x)N::(';) +s(P)Nd';)
D:(;;) = INt';)

• k(x)N"I';) -k(x).V:,(';) +ktp).V ,,(';)
Dl(~) = - N(';)

k(x).V, :(.;) -k(:x)N::(';) +k(fJ)Nd';)
D.(~ = - Nt';)

where

N,,(';) = -q e-':"+~l:--p e-':­

N: I (';) = qe-~:--pe-':­

N,,(';) = e-~:-+e-'l"iJl:­

Noz(';) = (q+p)e-:':-

N:1(';) = -(q-p)

Nn (';) = -2e-("'61:•.

In the same equation. the ellpressions for 5,(';) and 5:(';) are given as

in whil:h

f" It.\:
8(';. c) = sin --- sin ';.nlx.

n ('

Complt·x ",olS
In eqn (20),lhe unkn(,wn functiun. 0';), is related luthe unknuwn cucllicienl. A•• as fulluws:

where
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1\11"(~) = P ~[I !(~)S ,(~) - S1(~)/I(~)j C !r,:Jr +PI [/.(~)S I(~) - S .. (~)/I(~)1 C !i'~" +P1[1-&(~)S1(~) - S..(~)t ~(~)J c "T~~

AI H(';) = p,[/.(';)5 ,(.;) -S.(';)/,(';)le· :,:- +p:[/,(';)S,(';) -S,(';)/,(';)I +p,[/,(';)S.(';) -,),(.;)/.(';)1 c :,:-

At ,.W = p:[/,(';),):(';) -5,(';)l l (';)JC- M- +p,[/,(';}S.W -,),(';)/.(';)JC- :':-+ p ,[/,(';)S.(';) -.'1':(';)/.(';)) e-"':­

M(';) = p,[/,(';)S,W -5,(';)/,WI+p,[/,WS,(';) -,),(';)/:Wle' :,:- +Pl[/ l (';)S,t';) -,):(';)/,(';)le- 2,:-

in which

1,(';) =p, cos'h';-p:sin'hC

1,(';) =p,sinO,';+p:cos,Jr';;

5,(';) = q, cos 'h'; -'I: sin ~Ir';;

S,(';) = 'I, sin ,Jr'; +'1, cos ~Jr';;

The constants p,. Pl' q,. and 'I: arc defined as

I:W = -p, cos 0''; -P: sin :h';

1.(';) = -P, sin (Jr';+P:cos:h';

Sl(';) =q,cos~h';+q2sin'Ir';

S.W = 'I, sin ,Jr'; -q, cos ~h';.

P, = C••(/-m). P: = C••(, -nl.

q, = CIl+Cn(i'm-(n). q. = Cn(i'n+(m).

The known function. G(';). in the same equation is given as

GW = I ! q,[M,.(';)+M:.W)+q:[M"W-MWI
+ I m[M,.W-M,.WI+n[MuW+M(';))

where

The functions D ,(';) to D .(.;) which appear in eqn (21) arc defined as follows:
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• q"W lI (~) .... q,.W!d~) +q!Jf" (~)
D,(~) ;: /Jf(~)

D.( =) ;: q"Hd';) +q,.I"fd~)+q!l1"f,,<.;)
. , iJf(';1

D
= __ mJ(1I(';)-m.\f2,(~I+nJf,,(~)

,I~) - \f(:. ,)

D 1=);: _ mJfd~)-mJf!!(~)+IlJfd~)

• ~ M(';)

where

","f,,(';):I: -p!S:(';)e ';'''-p,S,(';)e-''"

M!,W:I: [P!S,I,;)-p,S,Wle-Y~'

"'1,,1';) :I: p,S,(';) e- "·'h +p,S, (.;) e-"h

M,!W:I: {I,WS!(';)-S,WI!Wle·!Y'"

M::W;: I,WS.t;)-I,(:;)S,(';1

'\I.:W;: (1:WS,(';)-I,(:;)S,Wle-:7~h.

In the same equatH1n. the e~pressions for S,(~) and S,(.;) become

and


